Multigrid Methods for Maxwell's Equations List of Tables
نویسنده
چکیده
In this work we study finite element methods for two-dimensional Maxwell’s equations and their solutions by multigrid algorithms. We begin with a brief survey of finite element methods for Maxwell’s equations. Then we review the related fundamentals, such as Sobolev spaces, elliptic regularity results, graded meshes, finite element methods for second order problems, and multigrid algorithms. In Chapter 3, we study two types of nonconforming finite element methods on graded meshes for a two-dimensional curl-curl and grad-div problem that appears in electromagnetics. The first method is based on a discretization using weakly continuous P1 vector fields. The second method uses discontinuous P1 vector fields. Optimal convergence rates (up to an arbitrary positive ε) in the energy norm and the L2 norm are established for both methods on graded meshes. In Chapter 4, we consider a class of symmetric discontinuous Galerkin methods for a model Poisson problem on graded meshes that share many techniques with the nonconforming methods in Chapter 3. Optimal order error estimates are derived in both the energy norm and the L2 norm. Then we establish the uniform convergence of W -cycle, V -cycle and F -cycle multigrid algorithms for the resulting discrete problems. In Chapter 5, we propose a new numerical approach for two-dimensional Maxwell’s equations that is based on the Hodge decomposition for divergence-free vector fields. In this approach, an approximate solution for Maxwell’s equations can be obtained by solving standard second order scalar elliptic boundary value problems. We illustrate this new approach by a P1 finite element method. In Chapter 6, we first report numerical results for multigrid algorithms applied to the discretized curlcurl and grad-div problem using nonconforming finite element methods. Then we present multigrid results for Maxwell’s equations based on the approach introduced
منابع مشابه
Multigrid methods for two-dimensional Maxwell's equations on graded meshes
In this work we investigate the numerical solution for two-dimensional Maxwell’s equations on graded meshes. The approach is based on the Hodge decomposition. The solution u of Maxwell’s equations is approximated by solving standard second order elliptic problems. Quasi-optimal error estimates for both u and ∇ × u in the L2 norm are obtained on graded meshes. We prove the uniform convergence of...
متن کاملAn octree multigrid method for quasi-static Maxwell's equations with highly discontinuous coefficients
In this paper we develop an OcTree discretization for Maxwell’s equations in the quasi-static regime. We then use this discretization in order to develop a multigrid method for Maxwell’s equations with highly discontinuous coefficients. We test our algorithms and compare it to other multilevel algorithms.
متن کاملON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
A Comparison of Parallel Solvers for the Incompressible Navier{Stokes Equations
The paper compares coupled multigrid methods and pressure Schur complement schemes (operator splitting schemes) for the solution of the steady state and time dependent incompressible Navier–Stokes equations. We consider pressure Schur complement schemes with multigrid as well as single grid methods for the solution of the Schur complement problem for the pressure. The numerical tests have been ...
متن کامل